The second law of thermodynamics, which predicts that the entropy of an isolated system out of equilibrium should tend to increase rather than decrease or stay constant, stands in apparent contradiction with the time-reversible equations of motion for classical and quantum systems. The time reversal symmetry of the equations of motion show that if one films a given time dependent physical process, then playing the movie of that process backwards does not violate the laws of mechanics. It is often argued that for every forward trajectory in which entropy increases, there exists a time reversed anti trajectory where entropy decreases, thus if one picks an initial state randomly from the system's phase space and evolves it forward according to the laws governing the system, decreasing entropy should be just as likely as increasing entropy. It might seem that this is incompatible with the second law of thermodynamics which predicts that entropy tends to increase. The problem of deriving irreversible thermodynamics from time-symmetric fundamental laws is referred to as Loschmidt's paradox.




Comment